Regenerative and restorative medicine for eye disease

Ad Blocker Detected

Our website is made possible by displaying online advertisements to our visitors. Please consider supporting us by disabling your ad blocker.

  • GBD 2019 Blindness and Vision Impairment Collaborators. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob. Health 9, e130–e143 (2021).

  • Rein, D. B. et al. The economic burden of vision loss and blindness in the United States. Ophthalmology 129, 369–378 (2021).

  • Age-Related Eye Disease Study Research et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch. Ophthalmol. 125, 1225–1232 (2007).

    Article 

    Google Scholar 

  • Caras, I. W., Collins, L. R. & Creasey, A. A. A stem cell journey in ophthalmology: from the bench to the clinic. Stem Cells Transl. Med. 10, 1581–1587 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haruta, M. et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Idelson, M. et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5, 396–408 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 4, 811–824 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Luo, J. et al. Human retinal progenitor cell transplantation preserves vision. J. Biol. Chem. 289, 6362–6371 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carr, A. J. et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4, e8152 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Mehat, M. S. et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125, 1765–1775 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sharma, R. et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci. Transl. Med. 11, eaaw7624 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chirco, K. R. et al. Preparation and evaluation of human choroid extracellular matrix scaffolds for the study of cell replacement strategies. Acta Biomater. 57, 293–303 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koss, M. J. et al. Subretinal implantation of a monolayer of human embryonic stem cell-derived retinal pigment epithelium: a feasibility and safety study in Yucatan minipigs. Graefes Arch. Clin. Exp. Ophthalmol. 254, 1553–1565 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kashani, A. H. et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration. Transl. Vis. Sci. Technol. 10, 13 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lingam, S. et al. cGMP-grade human iPSC-derived retinal photoreceptor precursor cells rescue cone photoreceptor damage in non-human primates. Stem Cell Res. Ther. 12, 464 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shirai, H. et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc. Natl Acad. Sci. USA 113, E81–E90 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chao, J. R. et al. Transplantation of human embryonic stem cell-derived retinal cells into the subretinal space of a non-human primate. Transl. Vis. Sci. Technol. 6, 4 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kupperman, B. D. et al. ARVO annual meeting abstract: Safety and activity of a single, intravitreal injection of human retinal progenitor cells (JCell) for treatment of retinitis pigmentosa (RP). Invest Ophthal Vis Sci. 59, 2987 (2018).

  • Lin, B., McLelland, B. T., Mathur, A., Aramant, R. B. & Seiler, M. J. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp. Eye Res. 174, 13–28 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ribeiro, J. et al. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep. 35, 109022 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aboualizadeh, E. et al. Imaging transplanted photoreceptors in living nonhuman primates with single-cell resolution. Stem Cell Rep. 15, 482–497 (2020).

    CAS 
    Article 

    Google Scholar 

  • Morgan, J. & Wong, R. Development of cell types and synaptic connections in the retina. in Webvision: The Organization of the Retina and Visual System (eds. Kolb, H., Fernandez, E. & Nelson, R.) (University of Utah Health Sciences, 1995).

  • Marc, R. E., Jones, B. W., Watt, C. B. & Strettoi, E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22, 607–655 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Sekirnjak, C. et al. Changes in physiological properties of rat ganglion cells during retinal degeneration. J. Neurophysiol. 105, 2560–2571 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.e1330 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gabriel, E. et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 28, 1740–1757 e1748 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miltner, A. M. & La Torre, A. Retinal ganglion cell replacement: current status and challenges ahead. Dev. Dyn. 248, 118–128 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Xiao, D. et al. In vivo regeneration of ganglion cells for vision restoration in mammalian retinas. Front. Cell Dev. Biol. 9, 755544 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peng, Y. R. et al. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell 176, 1222–1237 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Venugopalan, P. et al. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 7, 10472 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, Y. R. et al. Transplanted mouse embryonic stem cell-derived retinal ganglion cells integrate and form synapses in a retinal ganglion cell-depleted mouse model. Invest. Ophthalmol. Vis. Sci. 62, 26 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lahne, M., Nagashima, M., Hyde, D. R. & Hitchcock, P. F. Reprogramming Müller glia to regenerate retinal neurons. Annu Rev. Vis. Sci. 6, 171–193 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dyer, M. A. & Cepko, C. L. Control of Muller glial cell proliferation and activation following retinal injury. Nat. Neurosci. 3, 873–880 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hoang, T. et al. Gene regulatory networks controlling vertebrate retinal regeneration. Science 370, eabb8598 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jorstad, N. L. et al. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548, 103–107 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Livesey, F. J. & Cepko, C. L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jorstad, N. L. et al. Stimulation of functional neuronal regeneration from Muller glia in adult mice. Nature 548, 103–107 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Todd, L. et al. Efficient stimulation of retinal regeneration from Muller glia in adult mice using combinations of proneural bHLH transcription factors. Cell Rep. 37, 109857 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rossi, E. A. et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc. Natl Acad. Sci. USA 114, 586–591 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Z. et al. Quantification of retinal ganglion cell morphology in human glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 62, 34 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Palczewska, G. et al. Two-photon imaging of the mammalian retina with ultrafast pulsing laser. JCI Insight 3, e121555 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • Pandiyan, V. P. et al. The optoretinogram reveals the primary steps of phototransduction in the living human eye. Sci. Adv. 6, eabc1124 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ahuja, A. K. et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br. J. Ophthalmol. 95, 539–543 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dagnelie, G. et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus(R) II retinal prosthesis system. Clin. Exp. Ophthalmol. 45, 152–159 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Nanduri, D. et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest. Ophthalmol. Vis. Sci. 53, 205–214 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stingl, K. et al. Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations. Front. Neurosci. 11, 445 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ayton, L. N. et al. An update on retinal prostheses. Clin. Neurophysiol. 131, 1383–1398 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Palanker, D., Le Mer, Y., Mohand-Said, S., Muqit, M. & Sahel, J. A. Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 127, 1097–1104 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Maguire, A. M. et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology 126, 1273–1285 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cideciyan, A. V. et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl Acad. Sci. USA 110, E517–E525 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucher, K., Rodriguez-Bocanegra, E., Dauletbekov, D. & Fischer, M. D. Immune responses to retinal gene therapy using adeno-associated viral vectors — implications for treatment success and safety. Prog. Retin. Eye Res. 83, 100915 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van Gelder, R. N. Gene therapy approaches to slow or reverse blindness from inherited retinal degeneration: growth factors and optogenetics. Int. Ophthalmol. Clin. 61, 209–228 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Kauper, K. et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest. Ophthalmol. Vis. Sci. 53, 7484–7491 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chew, E. Y. et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology 126, 540–549 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Sahel, J. A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berry, M. H. et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat. Commun. 10, 1221 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tochitsky, I. et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron 81, 800–813 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tochitsky, I. et al. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 92, 100–113 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koga, K., Wang, B. & Kaneko, S. Current and furutre perspectives of HLA-edited induced pluripotent stem cells. Inflamm. Regen. 40, 223 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. & Lee, R. K. Cell transplantation to replace retinal ganglion cells faces challenges — the Switchboard Dilemma. Neural Regen. Res 16, 1138–1143 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Fligor, C. M. et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep. 16, 2228–2241 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yungher, B. J., Ribeiro, M. & Park, K. K. Regenerative responses and axon pathfinding of retinal ganglion cells in chronically injured mice. Invest. Ophthalmol. Vis. Sci. 58, 1743–1750 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Lima, S., Koriyama, Y., Kurimoto, T. & Benowitz, L. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl Acad. Sci. USA 109, 9149–9154 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Glennon, E., Svirsky, M. A. & Froemke, R. C. Auditory cortical plasticity in cochlear implant users. Curr. Opin. Neurobiol. 60, 108–114 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Palanker, D., Le Mer, Y., Mohand-Said, S. & Sahel, J. A. Simultaneous perception of prosthetic and natural vision in AMD patients. Nat. Commun. 13, 513 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwartz, S. D. et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379, 713–720 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petoe, M. A. et al. A second-generation (44-channel) suprachoroidal retinal prosthesis: interim clinical trial results. Transl. Vis. Sci. Technol. 10, 12 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morgan, J. L., Dhingra, A., Vardi, N. & Wong, R. O. L. Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar neurons. Nat. Neurosci. 9, 85–92 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar