Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosur Ps. 2008;79:368–76. https://doi.org/10.1136/jnnp.2007.131045.
Google Scholar
Ali K, Morris HR. Parkinson’s disease: chameleons and mimics. Pract Neurol. 2015;15(1):14–25. https://doi.org/10.1136/practneurol-2014-000849.
Google Scholar
Gilberto L. The relationship of Parkinson disease with aging. Arch Neurol. 2007;64(9):1242–6. https://doi.org/10.1001/archneur.64.9.1242.
Google Scholar
Dorsey ER, Sherer T, Okun M, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–8. https://doi.org/10.3233/JPD-181474.
Google Scholar
Dorsey ER, Bloem BR. The Parkinson pandemic-A call to action. JAMA Neurol. 2018;5(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299.
Google Scholar
Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: present and future. Metabolism. 2015;301:S40–60. https://doi.org/10.1016/j.metabol.2014.10.030.
Google Scholar
Olguín HJ, Guzmán DC, García EH, Mejía GB. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2015;2016:9730467. https://doi.org/10.1155/2016/9730467.
Google Scholar
Carr J, de la Fuente-Fernandez R, Schulzer M, Mak E, Calne SM, Calne DB. Familial and sporadic Parkinson’s disease usually display the same clinical features. Parkinsonism Relat Disord. 2003;9(4):201–4. https://doi.org/10.1016/s1353-8020(02)00048-2.
Google Scholar
Lewthwaite AJ, Nicholl DJ. Genetics of parkinsonism. Curr Neurol Neurosci Rep. 2005;5(5):397–404. https://doi.org/10.1007/s11910-005-0064-6.
Google Scholar
Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12(1):1807. https://doi.org/10.1038/s41467-021-22113-3.
Google Scholar
Grimm S, Hoehn A, Davies KJ, Grune T. Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res. 2011;45(1):73–88. https://doi.org/10.3109/10715762.2010.512040.
Google Scholar
Luo F, Ye M, Lv T, Hu B, Chen J, Yan J, et al. Efficacy of cognitive behavioral therapy on mood disorders, sleep, fatigue, and quality of life in Parkinson’s disease: a systematic review and meta-analysis. Front Psych. 2021;12:793804. https://doi.org/10.3389/fpsyt.2021.793804.
Google Scholar
Walter BL, Vitek JL. Surgical treatment for Parkinson’s disease. Lancet Neurol. 2004;3(12):719–28. https://doi.org/10.1016/S1474-4422(04)00934-2.
Google Scholar
Freeman TB. From transplants to gene therapy for Parkinson’s disease. Exp Neurol. 1997;144(1):47–50. https://doi.org/10.1006/exnr.1996.6387.
Google Scholar
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103–15. https://doi.org/10.1038/s41583-019-0257-7.
Google Scholar
Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson’s disease. Brain Res Bull. 2021;168:100–9. https://doi.org/10.1016/j.brainresbull.2020.12.017.
Google Scholar
Kim SR, Kim JY, Kim HY, So HY, Chung SJ. Factors associated with medication beliefs in patients with Parkinson’s disease: a cross-sectional study. J Mov Disord. 2021;14(2):133–43. https://doi.org/10.14802/jmd.20147.
Google Scholar
LeWitt PA. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov Disord. 2015;30(1):64–72. https://doi.org/10.1002/mds.26082.
Google Scholar
Borovac JA. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med. 2016;89(1):37–47.
Google Scholar
Brocks DR. Anticholinergic drugs used in Parkinson’s disease: an overlooked class of drugs from a pharmacokinetic perspective. J Pharm Pharm Sci. 1999;2(2):39–46.
Google Scholar
Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78(14):1096–9. https://doi.org/10.1212/WNL.0b013e31824e8f0d.
Google Scholar
Dezsi L, Vecsei L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2017;16(4):425–39. https://doi.org/10.2174/1871527316666170124165222.
Google Scholar
Finberg JPM. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J Neural Transm (Vienna). 2019;126(4):433–48. https://doi.org/10.1007/s00702-018-1952-7.
Google Scholar
Ogura H, Nakagawa R, Ishido M, Yoshinaga Y, Watanabe J, Kurihara K, et al. Evaluation of motor complications in Parkinson’s disease: understanding the perception gap between patients and physicians. Parkinsons Dis. 2021;2021:1599477. https://doi.org/10.1155/2021/1599477.
Google Scholar
Wang CC, Wu TL, Lin FJ, Tai CH, Lin CH, Wu RM. Amantadine treatment and delayed onset of levodopa-induced dyskinesia in patients with early Parkinson’s disease. Eur J Neurol. 2022;29(4):1044–55. https://doi.org/10.1111/ene.15234.
Google Scholar
Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S, et al. Long-term effectiveness of adjuvant treatment with catechol-O-methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson disease uncontrolled by Levodopa therapy: The PD med randomized clinical trial. JAMA Neurol. 2022;79(2):131–40. https://doi.org/10.1001/jamaneurol.2021.4736.
Google Scholar
Santos-Lobato BL, Bortolanza M, Pinheiro LC, Batalhao ME, Pimental AV, Capellari-Carnio, et al. Levodopa-induced dyskinesias in Parkinson’s disease increase cerebrospinal fluid nitric oxide metabolites’levels. J Neural Transm (Vienna). 2022;129(1):55–63. https://doi.org/10.1007/s00702-021-02447-4.
Google Scholar
Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.
Google Scholar
Oczkowska A, Kozubski W, Lianeri M, Dorszewska J. Mutations in PRKN and SNCA genes important for the progress of Parkinson’s disease. Curr Genomics. 2013;14(8):502–17. https://doi.org/10.2174/1389202914666131210205839.
Google Scholar
Bastias-Candia S, Zolezzi JM, Inestrosa NC. Revisiting the paraquat-induced sporadic Parkinson’s disease-like model. Mol Neurobiol. 2019;56(2):1044–55. https://doi.org/10.1007/s12035-018-1148-z.
Google Scholar
Leal PC, Bispo JMM, Engelberth R, KDDA S, Meurer YR, Ribeiro AM, et al. Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat. 2019;96:73–8. https://doi.org/10.1016/j.jchemneu.2018.12.011.
Google Scholar
Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res. 2007;11(3-4):151–67. https://doi.org/10.1007/BF03033565.
Google Scholar
Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756–64. https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003.
Google Scholar
Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65(2):135–72. https://doi.org/10.1016/s0301-0082(01)00003-x.
Google Scholar
Santana M, Palmer T, Simplicio H, Fuentes R, Petersson P. Characterization of long-term motor deficits in the 6-OHDA model of Parkinson’s disease in the common marmoset. Behav Brain Res. 2015;290:90–101. https://doi.org/10.1016/j.bbr.2015.04.037.
Google Scholar
Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42(7):613–32. https://doi.org/10.3109/10408444.2012.680431.
Google Scholar
Leao AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: new perspectives to a long-standing model. Brain Pathol. 2015;25(4):377–90. https://doi.org/10.1111/bpa.12253.
Google Scholar
Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends Pharmacol Sci. 2017;38(6):541–55. https://doi.org/10.1016/j.tips.2017.03.010.
Google Scholar
Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;140:104792. https://doi.org/10.1016/j.neubiorev.2022.104792.
Google Scholar
AlShimemeri S, Di Luca DG, Fox SH. MPTP parkinsonism and implications for understanding Parkinson’s disease. Mov Disord Clin Pract. 2021;9(1):42–7. https://doi.org/10.1002/mdc3.13344.
Google Scholar
Graham DG, Tiffany SM, Bell WR, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978;14(4):644–53.
Google Scholar
Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30(11):1412–37. https://doi.org/10.1039/c3np70031c.
Google Scholar
Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017;174(11):1395–425. https://doi.org/10.1111/bph.13631.
Google Scholar
Wang HB, Li YX, Hao YJ, Wang TF, Lei Z, Wu Y, et al. Neuroprotective effects of LBP on brain ischemic reperfusion neurodegeneration. Eur Rev Med Pharmacol Sci. 2013;17(20):2760–5.
Google Scholar
Wang X, Pang L, Zhang Y, Xu J, Ding D, Yang T, et al. Lycium barbarum Polysaccharide promotes nigrostriatal dopamine function by modulating PTEN/AKT/mTOR pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson’s disease. Neurochem Res. 2018;43(4):938–47. https://doi.org/10.1007/s11064-018-2499-6.
Google Scholar
Cao S, Du J, Hei Q. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp Ther Med. 2017;14(5):4919–27. https://doi.org/10.3892/etm.2017.5127.
Google Scholar
Lakshmanan Y, Wong FSY, Zuo B, So KF, Bui BV, Chan HH. Posttreatment intervention with Lycium barbarum polysaccharides is neuroprotective in a Rat model of chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2019;60(14):4606–18. https://doi.org/10.1167/iovs.19-27886.
Google Scholar
Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55. https://doi.org/10.1002/mds.23732.
Google Scholar
Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, et al. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by Qrt-PCR. Insect Sci. 2008;15(005):405–13. https://doi.org/10.1111/j.1744-7917.2008.00227.x.
Google Scholar
Li W, Fu Y, Halliday GM, Sue CM. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease. Front Cell Dev Biol. 2021;9:612476. https://doi.org/10.3389/fcell.2021.612476.
Google Scholar
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031. https://doi.org/10.1111/acel.13031.
Google Scholar
Xing X, Liu F, Xiao J, So KF. Neuro-protective mechanisms of Lycium barbarum. Neuromolecular Med. 2016;18(3):253–63. https://doi.org/10.1007/s12017-016-8393-y.
Google Scholar
Im AR, Kim YH, Uddin MR, Chae S, Lee HW, Kim YS, et al. Neuroprotective effects of Lycium chinense miller against rotenone-induced neurotoxicity in PC12 cells. Am J Chin Med. 2013;41(6):1343–59. https://doi.org/10.1142/S0192415X13500900.
Google Scholar
Gao K, Liu M, Cao J, Yao M, Lu Y, Li J, et al. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules. 2014;20(1):293–308. https://doi.org/10.3390/molecules20010293.
Google Scholar
Zhang Z, Teng X, Chen M, Li F. Orthologs of human disease associated genes and RNAi analysis of silencing insulin receptor gene in Bombyx mori. Int J Mol Sci. 2014;15(10):18102–16. https://doi.org/10.3390/ijms151018102.
Google Scholar
Jiang G, Song J, Hu H, Tong X, Dai F. Evaluation of the silkworm lemon mutant as an invertebrate animal model for human sepiapterin reductase deficiency. R Soc Open Sci. 2020;7(3):191888. https://doi.org/10.1098/rsos.191888.
Google Scholar
Matsumoto Y, Sumiya E, Sugita T, Sekimizu K. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS One. 2011;6(3):e18292. https://doi.org/10.1371/journal.pone.0018292.
Google Scholar
Matsumoto Y, Ishii M, Hayashi Y, Miyazaki S, Sugita T, Sumiya E, et al. Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep. 2015;5:10722. https://doi.org/10.1038/srep10722.
Google Scholar
Matsumoto Y, Sekimizu K. Evaluation of anti-diabetic drugs by using silkworm, Bombyx mori. Drug Discov Ther. 2016;10(1):19–23. https://doi.org/10.5582/ddt.2016.01017.
Google Scholar
Zhang X, Xue R, Cao G, Pan Z, Zheng X, Gong C. Silkworms can be used as an animal model to screen and evaluate gouty therapeutic drugs. J Insect Sci. 2012;12:4. https://doi.org/10.1673/031.012.0401.
Google Scholar
Nie H, Cheng T, Huang X, Zhou M, Zhang Y, Dai F, et al. Functional loss of Bmsei causes thermosensitive epilepsy in contractile mutant silkworm, Bombyx mori. Sci Rep. 2015;5:12308. https://doi.org/10.1038/srep12308.
Google Scholar
Tabunoki H, Bono H, Ito K, Yokoyama T. Can the silkworm (Bombyx mori) be used as a human disease model? Drug Discov Ther. 2016;10(1):3–8. https://doi.org/10.5582/ddt.2016.01011.
Google Scholar
Tabunoki H, Ono H, Ode H, Ishikawa K, Kawana N, Banno Y, et al. Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson’s disease. PLoS One. 2013;8(7):e69130. https://doi.org/10.1371/journal.pone.0069130.
Google Scholar
Zhu F, Chen H, Han J, Zhou W, Tang Q, Yu Q, et al. Proteomic and targeted metabolomic studies on a silkworm model of Parkinson’s disease. J Proteome Res. 2022;21(9):2114–23. https://doi.org/10.1021/acs.jproteome.2c00149.
Google Scholar
Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, et al. The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des. 2011;17(5):489–507. https://doi.org/10.2174/138161211795164095.
Google Scholar
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(S3):S26–36. https://doi.org/10.1002/ana.10483.
Google Scholar
Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193–222. https://doi.org/10.1146/annurev-pathol-011110-130242.
Google Scholar