Lycium barbarum polysaccharide improves dopamine metabolism and symptoms in an MPTP-induced model of Parkinson’s disease | BMC Medicine

  • Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosur Ps. 2008;79:368–76. https://doi.org/10.1136/jnnp.2007.131045.

    Article 
    CAS 

    Google Scholar 

  • Ali K, Morris HR. Parkinson’s disease: chameleons and mimics. Pract Neurol. 2015;15(1):14–25. https://doi.org/10.1136/practneurol-2014-000849.

    Article 
    PubMed 

    Google Scholar 

  • Gilberto L. The relationship of Parkinson disease with aging. Arch Neurol. 2007;64(9):1242–6. https://doi.org/10.1001/archneur.64.9.1242.

    Article 

    Google Scholar 

  • Dorsey ER, Sherer T, Okun M, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–8. https://doi.org/10.3233/JPD-181474.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dorsey ER, Bloem BR. The Parkinson pandemic-A call to action. JAMA Neurol. 2018;5(1):9–10. https://doi.org/10.1001/jamaneurol.2017.3299.

    Article 

    Google Scholar 

  • Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: present and future. Metabolism. 2015;301:S40–60. https://doi.org/10.1016/j.metabol.2014.10.030.

    Article 
    CAS 

    Google Scholar 

  • Olguín HJ, Guzmán DC, García EH, Mejía GB. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2015;2016:9730467. https://doi.org/10.1155/2016/9730467.

    Article 
    CAS 

    Google Scholar 

  • Carr J, de la Fuente-Fernandez R, Schulzer M, Mak E, Calne SM, Calne DB. Familial and sporadic Parkinson’s disease usually display the same clinical features. Parkinsonism Relat Disord. 2003;9(4):201–4. https://doi.org/10.1016/s1353-8020(02)00048-2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lewthwaite AJ, Nicholl DJ. Genetics of parkinsonism. Curr Neurol Neurosci Rep. 2005;5(5):397–404. https://doi.org/10.1007/s11910-005-0064-6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim S, Wong YC, Gao F, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun. 2021;12(1):1807. https://doi.org/10.1038/s41467-021-22113-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grimm S, Hoehn A, Davies KJ, Grune T. Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res. 2011;45(1):73–88. https://doi.org/10.3109/10715762.2010.512040.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo F, Ye M, Lv T, Hu B, Chen J, Yan J, et al. Efficacy of cognitive behavioral therapy on mood disorders, sleep, fatigue, and quality of life in Parkinson’s disease: a systematic review and meta-analysis. Front Psych. 2021;12:793804. https://doi.org/10.3389/fpsyt.2021.793804.

    Article 

    Google Scholar 

  • Walter BL, Vitek JL. Surgical treatment for Parkinson’s disease. Lancet Neurol. 2004;3(12):719–28. https://doi.org/10.1016/S1474-4422(04)00934-2.

    Article 
    PubMed 

    Google Scholar 

  • Freeman TB. From transplants to gene therapy for Parkinson’s disease. Exp Neurol. 1997;144(1):47–50. https://doi.org/10.1006/exnr.1996.6387.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103–15. https://doi.org/10.1038/s41583-019-0257-7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson’s disease. Brain Res Bull. 2021;168:100–9. https://doi.org/10.1016/j.brainresbull.2020.12.017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim SR, Kim JY, Kim HY, So HY, Chung SJ. Factors associated with medication beliefs in patients with Parkinson’s disease: a cross-sectional study. J Mov Disord. 2021;14(2):133–43. https://doi.org/10.14802/jmd.20147.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LeWitt PA. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov Disord. 2015;30(1):64–72. https://doi.org/10.1002/mds.26082.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borovac JA. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med. 2016;89(1):37–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brocks DR. Anticholinergic drugs used in Parkinson’s disease: an overlooked class of drugs from a pharmacokinetic perspective. J Pharm Pharm Sci. 1999;2(2):39–46.

    CAS 
    PubMed 

    Google Scholar 

  • Hubsher G, Haider M, Okun MS. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78(14):1096–9. https://doi.org/10.1212/WNL.0b013e31824e8f0d.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dezsi L, Vecsei L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol Disord Drug Targets. 2017;16(4):425–39. https://doi.org/10.2174/1871527316666170124165222.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Finberg JPM. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson’s disease. J Neural Transm (Vienna). 2019;126(4):433–48. https://doi.org/10.1007/s00702-018-1952-7.

    Article 

    Google Scholar 

  • Ogura H, Nakagawa R, Ishido M, Yoshinaga Y, Watanabe J, Kurihara K, et al. Evaluation of motor complications in Parkinson’s disease: understanding the perception gap between patients and physicians. Parkinsons Dis. 2021;2021:1599477. https://doi.org/10.1155/2021/1599477.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang CC, Wu TL, Lin FJ, Tai CH, Lin CH, Wu RM. Amantadine treatment and delayed onset of levodopa-induced dyskinesia in patients with early Parkinson’s disease. Eur J Neurol. 2022;29(4):1044–55. https://doi.org/10.1111/ene.15234.

    Article 
    PubMed 

    Google Scholar 

  • Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S, et al. Long-term effectiveness of adjuvant treatment with catechol-O-methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson disease uncontrolled by Levodopa therapy: The PD med randomized clinical trial. JAMA Neurol. 2022;79(2):131–40. https://doi.org/10.1001/jamaneurol.2021.4736.

    Article 
    PubMed 

    Google Scholar 

  • Santos-Lobato BL, Bortolanza M, Pinheiro LC, Batalhao ME, Pimental AV, Capellari-Carnio, et al. Levodopa-induced dyskinesias in Parkinson’s disease increase cerebrospinal fluid nitric oxide metabolites’levels. J Neural Transm (Vienna). 2022;129(1):55–63. https://doi.org/10.1007/s00702-021-02447-4.

    Article 
    CAS 

    Google Scholar 

  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oczkowska A, Kozubski W, Lianeri M, Dorszewska J. Mutations in PRKN and SNCA genes important for the progress of Parkinson’s disease. Curr Genomics. 2013;14(8):502–17. https://doi.org/10.2174/1389202914666131210205839.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastias-Candia S, Zolezzi JM, Inestrosa NC. Revisiting the paraquat-induced sporadic Parkinson’s disease-like model. Mol Neurobiol. 2019;56(2):1044–55. https://doi.org/10.1007/s12035-018-1148-z.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leal PC, Bispo JMM, Engelberth R, KDDA S, Meurer YR, Ribeiro AM, et al. Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat. 2019;96:73–8. https://doi.org/10.1016/j.jchemneu.2018.12.011.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res. 2007;11(3-4):151–67. https://doi.org/10.1007/BF03033565.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756–64. https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65(2):135–72. https://doi.org/10.1016/s0301-0082(01)00003-x.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santana M, Palmer T, Simplicio H, Fuentes R, Petersson P. Characterization of long-term motor deficits in the 6-OHDA model of Parkinson’s disease in the common marmoset. Behav Brain Res. 2015;290:90–101. https://doi.org/10.1016/j.bbr.2015.04.037.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42(7):613–32. https://doi.org/10.3109/10408444.2012.680431.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leao AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH. Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: new perspectives to a long-standing model. Brain Pathol. 2015;25(4):377–90. https://doi.org/10.1111/bpa.12253.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schildknecht S, Di Monte DA, Pape R, Tieu K, Leist M. Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends Pharmacol Sci. 2017;38(6):541–55. https://doi.org/10.1016/j.tips.2017.03.010.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Narmashiri A, Abbaszadeh M, Ghazizadeh A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2022;140:104792. https://doi.org/10.1016/j.neubiorev.2022.104792.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • AlShimemeri S, Di Luca DG, Fox SH. MPTP parkinsonism and implications for understanding Parkinson’s disease. Mov Disord Clin Pract. 2021;9(1):42–7. https://doi.org/10.1002/mdc3.13344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham DG, Tiffany SM, Bell WR, Gutknecht WF. Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol. 1978;14(4):644–53.

    CAS 
    PubMed 

    Google Scholar 

  • Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30(11):1412–37. https://doi.org/10.1039/c3np70031c.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017;174(11):1395–425. https://doi.org/10.1111/bph.13631.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang HB, Li YX, Hao YJ, Wang TF, Lei Z, Wu Y, et al. Neuroprotective effects of LBP on brain ischemic reperfusion neurodegeneration. Eur Rev Med Pharmacol Sci. 2013;17(20):2760–5.

    PubMed 

    Google Scholar 

  • Wang X, Pang L, Zhang Y, Xu J, Ding D, Yang T, et al. Lycium barbarum Polysaccharide promotes nigrostriatal dopamine function by modulating PTEN/AKT/mTOR pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson’s disease. Neurochem Res. 2018;43(4):938–47. https://doi.org/10.1007/s11064-018-2499-6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao S, Du J, Hei Q. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp Ther Med. 2017;14(5):4919–27. https://doi.org/10.3892/etm.2017.5127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lakshmanan Y, Wong FSY, Zuo B, So KF, Bui BV, Chan HH. Posttreatment intervention with Lycium barbarum polysaccharides is neuroprotective in a Rat model of chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2019;60(14):4606–18. https://doi.org/10.1167/iovs.19-27886.

    Article 
    PubMed 

    Google Scholar 

  • Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55. https://doi.org/10.1002/mds.23732.

    Article 
    PubMed 

    Google Scholar 

  • Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, et al. Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by Qrt-PCR. Insect Sci. 2008;15(005):405–13. https://doi.org/10.1111/j.1744-7917.2008.00227.x.

    Article 
    CAS 

    Google Scholar 

  • Li W, Fu Y, Halliday GM, Sue CM. PARK genes link mitochondrial dysfunction and alpha-synuclein pathology in sporadic Parkinson’s disease. Front Cell Dev Biol. 2021;9:612476. https://doi.org/10.3389/fcell.2021.612476.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031. https://doi.org/10.1111/acel.13031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xing X, Liu F, Xiao J, So KF. Neuro-protective mechanisms of Lycium barbarum. Neuromolecular Med. 2016;18(3):253–63. https://doi.org/10.1007/s12017-016-8393-y.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Im AR, Kim YH, Uddin MR, Chae S, Lee HW, Kim YS, et al. Neuroprotective effects of Lycium chinense miller against rotenone-induced neurotoxicity in PC12 cells. Am J Chin Med. 2013;41(6):1343–59. https://doi.org/10.1142/S0192415X13500900.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao K, Liu M, Cao J, Yao M, Lu Y, Li J, et al. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules. 2014;20(1):293–308. https://doi.org/10.3390/molecules20010293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Z, Teng X, Chen M, Li F. Orthologs of human disease associated genes and RNAi analysis of silencing insulin receptor gene in Bombyx mori. Int J Mol Sci. 2014;15(10):18102–16. https://doi.org/10.3390/ijms151018102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang G, Song J, Hu H, Tong X, Dai F. Evaluation of the silkworm lemon mutant as an invertebrate animal model for human sepiapterin reductase deficiency. R Soc Open Sci. 2020;7(3):191888. https://doi.org/10.1098/rsos.191888.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsumoto Y, Sumiya E, Sugita T, Sekimizu K. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS One. 2011;6(3):e18292. https://doi.org/10.1371/journal.pone.0018292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsumoto Y, Ishii M, Hayashi Y, Miyazaki S, Sugita T, Sumiya E, et al. Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep. 2015;5:10722. https://doi.org/10.1038/srep10722.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsumoto Y, Sekimizu K. Evaluation of anti-diabetic drugs by using silkworm, Bombyx mori. Drug Discov Ther. 2016;10(1):19–23. https://doi.org/10.5582/ddt.2016.01017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang X, Xue R, Cao G, Pan Z, Zheng X, Gong C. Silkworms can be used as an animal model to screen and evaluate gouty therapeutic drugs. J Insect Sci. 2012;12:4. https://doi.org/10.1673/031.012.0401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie H, Cheng T, Huang X, Zhou M, Zhang Y, Dai F, et al. Functional loss of Bmsei causes thermosensitive epilepsy in contractile mutant silkworm, Bombyx mori. Sci Rep. 2015;5:12308. https://doi.org/10.1038/srep12308.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tabunoki H, Bono H, Ito K, Yokoyama T. Can the silkworm (Bombyx mori) be used as a human disease model? Drug Discov Ther. 2016;10(1):3–8. https://doi.org/10.5582/ddt.2016.01011.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tabunoki H, Ono H, Ode H, Ishikawa K, Kawana N, Banno Y, et al. Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson’s disease. PLoS One. 2013;8(7):e69130. https://doi.org/10.1371/journal.pone.0069130.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu F, Chen H, Han J, Zhou W, Tang Q, Yu Q, et al. Proteomic and targeted metabolomic studies on a silkworm model of Parkinson’s disease. J Proteome Res. 2022;21(9):2114–23. https://doi.org/10.1021/acs.jproteome.2c00149.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prediger RD, Aguiar AS Jr, Moreira EL, Matheus FC, Castro AA, Walz R, et al. The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s disease. Curr Pharm Des. 2011;17(5):489–507. https://doi.org/10.2174/138161211795164095.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol. 2003;53(S3):S26–36. https://doi.org/10.1002/ana.10483.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol. 2011;6:193–222. https://doi.org/10.1146/annurev-pathol-011110-130242.

    Article 
    CAS 
    PubMed 

    Google Scholar