Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya | BMC Medicine

  • Murray CJL, Ikuta KS, Sharara F, Swechinsky L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. lancet

  • Tang KL, Caffrey NP, Nobrega DB, Cork SC, Ronksley PE, Barkema HW, et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet Health. 2017;1(8):e316-27.

    ArticleGoogle Scholar

  • Woolhouse M, Ward M, van Bunnik B, Farrar J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc London B Biol Sci. 2015;370(1670):20140083.

  • Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L, Renaud N, et al. Antimicrobial resistance in wildlife. J Appl Ecol. 2016;53(2):519-29.

    ArticleGoogle Scholar

  • Hassell JM, Ward MJ, Muloi D, Bettridge JM, Robinson TP, Kariuki S, et al. Clinically relevant antimicrobial resistance at the wildlife-livestock-human interface in Nairobi: an epidemiological study. Lancet Planet Health. 2019;3(6):e259-69.

    ArticleGoogle Scholar

  • Kern W, Rieg S. Burden of bacterial bloodstream infection—a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect. 2020;26(2):151-7.

    Article CASGoogle Scholar

  • Muloi D, Ward MJ, Pedersen AB, Fevre EM, Woolhouse MEJ, van Bunnik BAD. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne PathogDis. 2018;15(8):467-74.

    ArticleGoogle Scholar

  • Wee BA, Muloi DM, van Bunnik BAD. Quantifying the transmission of antimicrobial resistance at the human and livestock interface with genomics. Clin Microbiol Infect. 2020;26(12):1612-6.

    ArticleGoogle Scholar

  • Muloi DM, Wee BA, McClean DMH, Ward MJ, Pankhurst L, Phan H, et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat Microbiol. 2022;7(4):581-9.

  • Bettridge JM, Robinson TR, Hassell JM, Kariuki S, Ward MJ, Woolhouse MEJ, et al., editors. An epidemiologically structured sampling strategy to capture bacterial diversity in a changing urban environment. Proceedings of the Society for Veterinary Epidemiology and Preventive Medicine; 2017; United Kingdom.

  • Bharat A, Petkau A, Avery BP, Chen JC, Folster JP, Carson CA, et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using Staramr. microorganisms. 2022;10(2):292.

    Article CASGoogle Scholar

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640-4.

    Article CASGoogle Scholar

  • Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother. 2017;72(10):2764-8.

    Article CASGoogle Scholar

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. R package version 2.5-7. 2020

  • Hughes JB, Hellman JJ, Ricketts TH, Bohannan BJM. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol. 2001;67(10):4399-406.

    Article CASGoogle Scholar

  • Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol Evol. 2016;7(12):1451-6.

    ArticleGoogle Scholar

  • Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93(12):2533-47.

    ArticleGoogle Scholar

  • Veech YES. A probabilistic model for analyzing species co-occurrence. Glob Ecol Biogeogr. 2013;22(2):252-60.

    ArticleGoogle Scholar

  • Griffith DM, Veech JA, Marsh CJ. Cooccur: probabilistic species co-occurrence analysis in R.J Stat Softw. 2016;69(2):1-17.

    Google Scholar

  • Saiz H, Gómez-Gardeñes J, Borda JP, Maestre FT. The structure of plant spatial association networks is linked to plant diversity in global drylands. J Ecol. 2018;106(4):1443-53.

    ArticleGoogle Scholar

  • Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Syst. 2006;1695(5):1-9.

    Google Scholar

  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer Verlag; 2016

  • Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, et al. glmmTMB: generalized linear mixed models using Template Model Builder. R package version 0.1. 0. 2017.

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. package ‘car.’ Vienna: R Foundation for Statistical Computing; 2012. p. 16

    Google Scholar

  • Barton K, Barton MK. Package ‘moomin.’ Version. 2015;1(18):439.

    Google Scholar

  • Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 03.2020;3.

  • Muloi D, Kiiru J, Ward MJ, Hassell JM, Bettridge JM, Robinson TP, et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int J Antimicrob Agents. 2019;54(5):531-7.

    Article CASGoogle Scholar

  • Subbiah M, Caudell MA, Mair C, Davis MA, Matthews L, Quinlan RJ, et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat Commun. 2020;11(1):228.

    Article CASGoogle Scholar

  • Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat Microbiol. 2018;3(9):1063-73.

    Article CASGoogle Scholar

  • Hickman RA, Leangapichart T, Lunha K, Jiwakanon J, Angkititrakul S, Magnusson U, et al. Exploring the Antibiotic Resistance Burden in Livestock, Livestock Handlers and Their Non-Livestock Handling Contacts: A One Health Perspective. front microbiol. 2021;12:651461.

  • Aworh MK, Kwaga J, Okolocha E, Harden L, Hull D, Hendriksen RS, et al. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook. 2020;2(1):8.

    ArticleGoogle Scholar

  • Nguyen VT, Jamrozy D, Matamoros S, Carrique-Mas JJ, Ho HM, Thai QH, et al. Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: an epidemiological and genomic analysis. J Antimicrob Chemother. 2019;74(3):561-70.

    ArticleGoogle Scholar

  • Muloi D, Fevre EM, Bettridge J, Rono R, Ong’are D, Hassell JM, et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J Glob Health. 2019;9:020412.

  • Alcalá L, Alonso CA, Simón C, González-Esteban C, Orós J, Rezusta A, et al. Wild birds, frequent carriers of extended-spectrum β-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb Ecol. 2016;72(4):861-9.

    ArticleGoogle Scholar

  • Ben Yahia H, Ben Sallem R, Tayh G, Klibi N, Ben Amor I, Gharsa H, et al. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia. BMC microbiol. 2018;18(1):26.

    ArticleGoogle Scholar

  • Schaufler K, Nowak K, Düx A, Semmler T, Villa L, Kourouma L, et al. Clinically Relevant ESBL-Producing K. pneumoniae ST307 and E. coli ST38 in an Urban West African Rat Population. front microbiol. 2018;9:150.

  • Fashae K, Engelmann I, Monecke S, Braun SD, Ehricht R. Molecular characterization of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria. BMC Vet Res. 2021;17(1):33.

    Article CASGoogle Scholar

  • Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol. 2020;5(6):787-95.

    Article CASGoogle Scholar

  • Nadimpalli ML, Stegger M, Viau R, Yith V, de Lauzanne A, Sem N, et al. Leakiness at the human-animal interface in Southeast Asia and implications for the spread of antibiotic resistance. bioRxiv. 2021:2021.03.15.435134.

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci. 2014;111(42):15202-7.

    Article CASGoogle Scholar

  • Graham DW, Knapp CW, Christensen BT, McCluskey S, Dolfing J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci Rep. 2016;6:21550.

    Article CASGoogle Scholar

  • Stoesser N, Sheppard AE, Moore CE, Golubchik T, Parry CM, Nget P, et al. Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing Escherichia coli isolates: implications for transmission analyses. J Clin Microbiol. 2015;53(7):2122-31.

    Article CASGoogle Scholar

  • Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3(8):898-908.

    Article CASGoogle Scholar

  • Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science. 2018;360(6390):733-8.

    Article CASGoogle Scholar

  • WHO. GLASS whole-genome sequencing for surveillance of antimicrobial resistance. 2020. World Health Organization; 2020

  • Sun J, Yang M, Sreevatsan S, Bender JB, Singer RS, Knutson TP, et al. Longitudinal study of Staphylococcus aureus colonization and infection in a cohort of swine veterinarians in the United States. BMC Infect Dis. 2017;17(1):1-13.

    ArticleGoogle Scholar

  • Dishon M, et al. Genomic epidemiology of Escherichia coli: antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya, Dryad: Dataset; 2022. https://doi.org/10.5061/dryad.qnk98sfkf.