Ethical and regulatory issues of stem cell-derived 3-dimensional organoid and tissue therapy for personalised regenerative medicine | BMC Medicine

  • Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36(5):432–41.

    Article 
    CAS 

    Google Scholar 

  • https://www.tmd.ac.jp/press-release/20220707-1/. 2022.

  • National Acadamy of Sciences. Guidelines for human embryonic stem cell research. Washington, D.C.; 2005.

  • National Acadamy of Sciences. The emerging field of human neural organoids, transplants, and chimeras. The emerging field of human neural Organoids, transplants, and chimeras; 2021.

    Google Scholar 

  • Directorate-General for Health and Food Safety, European Commission. Proposal for a Regulation of the European Parliament and of the Council on standards of quality and safety for substances of human origin intended for human application and repealing Directives 2002/98/EC and 2004/23/EC. Brussels; 2022.

  • European Parliament and the Council of the European Union. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004, Vol. L. Brussels: Official Journal of the European Union; 2007.

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article 
    CAS 

    Google Scholar 

  • Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, et al. Review: synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng. 2018;2(4):41501.

    Article 

    Google Scholar 

  • Garreta E, Kamm RD, de Sousa C, Lopes SM, Lancaster MA, Weiss R, et al. Rethinking organoid technology through bioengineering. Nat Mater. 2021;20(2):145–55.

    Article 
    CAS 

    Google Scholar 

  • Lancaster MA, Huch M. Disease modelling in human organoids. DMM. Dis Model Mech. 2019;12(7):dmm039347.

    Article 
    CAS 

    Google Scholar 

  • Andrews MG, Nowakowski TJ. Human brain development through the lens of cerebral organoid models. Brain Res. 2019;1725:146470.

    Article 
    CAS 

    Google Scholar 

  • Walker MJ, Nielsen J, Goddard E, Harris A, Hutchison K. Induced pluripotent stem cell-based Systems for Personalising Epilepsy Treatment: research ethics challenges and new insights for the ethics of personalised medicine. AJOB Neurosci. 2022;13(2):120–31.

    Article 

    Google Scholar 

  • Harris AR, Walker MJ, Gilbert F, McGivern P. Investigating the feasibility and ethical implications of phenotypic screening using stem cell-derived tissue models to detect and manage disease. Stem Cell Reports. 2022;17(5):1023–32.

    Article 

    Google Scholar 

  • Kiatpongsan S, Sipp D. Monitoring and regulating offshore stem cell clinics. Science (80- ). 2009;323(5921):1564–5.

    Article 
    CAS 

    Google Scholar 

  • Lv J, Su Y, Song L, Gong X, Peng Y. Stem cell ‘therapy’ advertisements in China: Infodemic, regulations and recommendations. Cell Prolif. 2020;53(12):e12937.

    Article 
    CAS 

    Google Scholar 

  • U.S. Food and Drug Administration (FDA). Regulatory considerations for human cells, tissues, and cellular and tissue-based products: minimal manipulation and homologous use. Silver Spring: Guidance for Industry and Food and Drug Administration Staff; 2020. FDA-2017-D-6146-0001.

  • Chirba M, Noble A. Our bodies, our cells: FDA regulation of autologous adult stem cell therapies: Bill of Health (Boston College Law School Faculty Papers); 2013.

    Google Scholar 

  • Lysaght T, Campbell AV. Broadening the scope of debates around stem cell research. Bioethics. 2013;27(5):251–6.

    Article 

    Google Scholar 

  • Berkowitz AL, Miller MB, Mir SA, Cagney D, Chavakula V, Guleria I, et al. Glioproliferative lesion of the spinal cord as a complication of “stem-cell tourism”. N Engl J Med. 2016;375(2):196–8.

    Article 

    Google Scholar 

  • Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol. 2010;21(7):1218 LP–1222.

    Article 

    Google Scholar 

  • Ballantyne C. Fetal stem cells cause tumor in a teenage boy. Sci Am. 2009. Available from: https://blogs.scientificamerican.com/news-blog/embryonic-stem-cells-cause-cancer-i-2009-02-19/#:~:text=The%20tumor%20was%20benign%2C%20doctors,of%20Scientific%20American%20and%20elsewhere.

  • Jabr F. In the flesh: the embedded dangers of untested stem cell cosmetics. Sci Am. 2012. Available from: https://www.scientificamerican.com/article/stem-cell-cosmetics/.

  • Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE, et al. Vision loss after Intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53.

    Article 

    Google Scholar 

  • Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765–75.

    Article 

    Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46.

    Article 
    CAS 

    Google Scholar 

  • Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(5):360–8.

    Article 

    Google Scholar 

  • Reardon S. First pig-to-human heart transplant: what can scientists learn? Nature. 2022;601:305–6.

    Article 
    CAS 

    Google Scholar 

  • Gilbert F, Harris AR, Kapsa RMI. Efficacy testing as a primary purpose of phase 1 clinical trials: is it applicable to first-in-human bionics and Optogenetics trials? AJOB Neurosci. 2012;3(2):20–2.

    Article 

    Google Scholar 

  • Gilbert F, Harris AR, Kapsa RMI. Controlling brain cells with light: ethical considerations for Optogenetic clinical trials. AJOB Neurosci. 2014;5(3):3–11.

    Article 

    Google Scholar 

  • Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381(13):1240–7.

    Article 
    CAS 

    Google Scholar 

  • Lysaght T, Lipworth W, Hendl T, Kerridge I, Lee T-L, Munsie M, et al. The deadly business of an unregulated global stem cell industry. J Med Ethics. 2017;43(11):744 LP–746.

    Article 

    Google Scholar 

  • Turner L. The US direct-to-consumer marketplace for autologous stem cell interventions. Perspect Biol Med. 2018;61(1):7–24.

    Article 

    Google Scholar 

  • Sipp D. Challenges in the regulation of autologous stem cell interventions in the United States. Perspect Biol Med. 2018;61(1):25–41.

    Article 

    Google Scholar 

  • www.isscr.org/policy/guidelines-for-stem-cell-research-and-clinical-translation. ISSCR guidelines for stem cell science and clinical translation. 2021.

  • Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155–68.

    Article 
    CAS 

    Google Scholar 

  • Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12(7):671–8.

    Article 

    Google Scholar 

  • Tomaskovic-Crook E, Zhang P, Ahtiainen A, Kaisvuo H, Lee CY, Beirne S, et al. Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation. Adv Healthc Mater. 2019;8(15):1900425.

    Article 

    Google Scholar 

  • U.S. Food and Drug Administration (FDA). Preclinical assessment of investigational cellular and gene therapy products. Silver Spring; 2013. FDA-2012-D-1038.

  • U.S. Food and Drug Administration (FDA). Considerations for the design of early-phase clinical trials of cellular and gene therapy products. Silver Spring; 2015. FDA-2013-D-0576.

  • Hyun I, Taylor P, Testa G, Dickens B, Jung KW, McNab A, et al. Ethical standards for human-to-animal chimera experiments in stem cell research. Cell Stem Cell. 2007;1(2):159–63.

    Article 

    Google Scholar 

  • Harris A. Comment to human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science. 2015;347:1465–70.

    Article 

    Google Scholar 

  • Chen HI, Wolf JA, Blue R, Song MM, Moreno JD, Ming G, et al. Transplantation of human brain Organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell. 2019;25(4):462–72.

    Article 
    CAS 

    Google Scholar 

  • Harris AR, McGivern P, Ooi L. Modeling emergent properties in the brain using tissue models to investigate neurodegenerative disease. Neuroscientist. 2020;26(3):224–30.

    Article 

    Google Scholar 

  • Koplin JJ, Savulescu J. Moral limits of brain Organoid research. J Law, Med Ethics. 2019;47(4):760–7.

    Article 

    Google Scholar 

  • Ohayon EL, Tsang PW, Lam A. A computational window into the problem with organoids: approaching minimal substrates for consciousness. Washington, D.C.: Society for Neuroscience; 2019.

    Google Scholar 

  • Kagan BJ, Duc D, Stevens I, Gilbert F. Neurons embodied in a virtual world: evidence for Organoid ethics? AJOB Neurosci. 2022;13(2):114–7.

    Article 

    Google Scholar 

  • Shepherd J. Consciousness and moral status. Consciousness and moral status: Taylor & Francis; 2018.

    Book 

    Google Scholar 

  • Jaworska A, Tannenbaum J. The Grounds of Moral Status [Internet]. Available from: http://plato.stanford.edu/entries/grounds-moral-status/

  • Lavazza A, Massimini M. Cerebral organoids: ethical issues and consciousness assessment. J Med Ethics. 2018;44(9):606 LP–610.

    Article 

    Google Scholar 

  • Lavazza A. Potential ethical problems with human cerebral organoids: consciousness and moral status of future brains in a dish. Brain Res. 2021;1750:147146.

    Article 
    CAS 

    Google Scholar 

  • Hansson SO. Implant ethics. J Med Ethics. 2005;31(9):519 LP–525.

    Article 

    Google Scholar 

  • Gilbert F. Self-Estrangement & Deep Brain Stimulation: ethical issues related to forced Explantation. Neuroethics. 2015;8(2):107–14.

    Article 

    Google Scholar 

  • Gilbert F, Viaña JNM, Ineichen C. Deflating the “DBS causes personality changes” bubble. Neuroethics. 2021;14(1):1–17.

    Article 

    Google Scholar 

  • Gilbert F, Viaña JN. A personal narrative on living and dealing with psychiatric symptoms after DBS surgery. Narrat Inq Bioeth. 2018;8(1):67–77.

    Article 

    Google Scholar 

  • Klaming L, Haselager P. Did my brain implant make me do it? Questions raised by DBS regarding psychological continuity, responsibility for action and mental competence. Neuroethics. 2013;6(3):527–39.

    Article 

    Google Scholar 

  • Chadwick RF. The market for bodily parts: Kant and duties to oneself. J Appl Philos. 1989;6(2):129–40.

    Article 

    Google Scholar 

  • Svenaeus F. The body as gift, resource or commodity? Heidegger and the ethics of organ transplantation. J Bioeth Inq. 2010;7(2):163–72.

    Article 

    Google Scholar 

  • Gold E. Body parts: property rights and the ownership of human biological materials. Washington, D.C.: Georgetown University Press; 1997.

    Google Scholar 

  • Fiduciary Duty of Researchers – the Spleen Case – Moore v. Regents of University of California, 793 P.2d 479 (Cal. 1990) [Internet]. 1998. Available from: https://biotech.law.lsu.edu/cases/consent/Moore_v_Regents.htm

  • Allen MJ, Powers MLE, Gronowski KS, Gronowski AM. Human tissue ownership and use in research: what Laboratorians and researchers should know. Clin Chem. 2010;56(11):1675–82.

    Article 
    CAS 

    Google Scholar 

  • Wall J. Being and owning: the body, bodily material, and the law. Oxford: Oxford University Press; 2015. p. 235.

    Book 

    Google Scholar 

  • Dickenson D. Property in the body: feminist perspectives. In: Cambridge bioethics and law. 2nd ed. Cambridge: Cambridge University Press; 2017.

    Google Scholar 

  • Www.isscr.org/docs/default-source/policy-documents/isscr-informed-consent-standards-for-stem-cell-based-interventions.pdf. Informed Consent Standard for Stem Cell-Based Interventions Offered Outside of Formal Clinical Trials. 2019;

  • Greely HT. Human brain surrogates research: the onrushing ethical dilemma. Am J Bioeth. 2021;21(1):34–45.

    Article 

    Google Scholar 

  • Marks PW, Witten CM, Califf RM. Clarifying stem-cell Therapy’s benefits and risks. N Engl J Med. 2016;376(11):1007–9.

    Article 

    Google Scholar 

  • Gilbert F, Viaña JNM, O’Connell CD, Dodds S. Enthusiastic portrayal of 3D bioprinting in the media: ethical side effects. Bioethics. 2018;32(2):94–102.

    Article 

    Google Scholar 

  • Gilbert F, O’Connell CD, Mladenovska T, Dodds S. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics. 2018;24(1):73–91.

    Article 

    Google Scholar 

  • Harris AR, Gilbert F. Military medicine research: incorporation of high risk of irreversible harms into a stratified risk framework for clinical trials. In: Health Care in Contexts of risk, uncertainty, and hybridity military and humanitarian health ethics: Springer; 2022. p. 253–73.

    Google Scholar 

  • Baer AR, Devine S, Beardmore CD, Catalano R. Clinical investigator responsibilities. J Oncol Pract. 2011;7(2):124–8.

    Article 

    Google Scholar 

  • Feehan AK, Garcia-Diaz J. Investigator responsibilities in clinical research. Ochsner J. 2020;20(1):44–9.

    Article 

    Google Scholar 

  • Dubinsky PM, Henry KA. The fundamentals of clinical research: a universal guide for implementing good clinical practice: Wiley; 2022. p. 2–5.

    Book 

    Google Scholar 

  • Ad Blocker Detected

    Our website is made possible by displaying online advertisements to our visitors. Please consider supporting us by disabling your ad blocker.

    Refresh